翻訳と辞書 |
Polygamma function : ウィキペディア英語版 | Polygamma function
In mathematics, the polygamma function of order ''m'' is a meromorphic function on and defined as the (''m''+1)-th derivative of the logarithm of the gamma function: : Thus : holds where ψ(''z'') is the digamma function and Γ(''z'') is the gamma function. They are holomorphic on . At all the nonpositive integers these polygamma functions have a pole of order ''m'' + 1. The function ψ(1)(''z'') is sometimes called the trigamma function. (z)
|- | | | |- | | | |} ==Integral representation== The polygamma function may be represented as : which holds for Re ''z'' >0 and ''m'' > 0. For ''m'' = 0 see the digamma function definition.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Polygamma function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|